Spectral Decompositions Using One-Homogeneous Functionals

نویسندگان

  • Martin Burger
  • Guy Gilboa
  • Michael Möller
  • Lina Eckardt
  • Daniel Cremers
چکیده

This paper discusses the use of absolutely one-homogeneous regularization functionals in a variational, scale space, and inverse scale space setting to define a nonlinear spectral decomposition of input data. We present several theoretical results that explain the relation between the different definitions. Additionally, results on the orthogonality of the decomposition, a Parsevaltype identity and the notion of generalized (nonlinear) eigenvectors closely link our nonlinear multiscale decompositions to the well-known linear filtering theory. Numerical results are used to illustrate our findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image...

متن کامل

Local and Gradient-Corrected Density Functionals

The generalized gradient approximation (GGA) corrects many of the shortcomings of the local spin-density (LSD) approximation. The accuracy of GGA for ground-state properties of molecules is comparable to or better than the accuracy of conventional quantum chemical methods such as second-order Møller-Plesset perturbation theory. By studying various decompositions of the exchange-correlation ener...

متن کامل

Pseudo-spectral Least-squares Method for Elliptic Interface Problems

This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete l...

متن کامل

Basic Aspects of Soliton Theory

This is a review of the main ideas of the inverse scattering method (ISM) for solving nonlinear evolution equations (NLEE), known as soliton equations. As a basic tool we use the fundamental analytic solutions χ(x, λ) of the Lax operator L(λ). Then the inverse scattering problem for L(λ) reduces to a Riemann–Hilbert problem. Such construction has been applied to wide class of Lax operators, rel...

متن کامل

Spectral Properties of Dynamical Systems, Model Reduction and Decompositions

In this paper we discuss two issues related to model reduction of deterministic or stochastic processes. The first is the relationship of the spectral properties of the dynamics on the attractor of the original, high-dimensional dynamical system with the properties and possibilities for model reduction. We review some elements of the spectral theory of dynamical systems. We apply this theory to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016